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Abstract—This paper describes new algorithms for prog-
nostics and anomaly detection on systems that can be
described by low dimensional, potentially nonlinear dynam-
ics. The methodology relies on estimating the conditional
probability distribution of the output of the system at a
future time given knowledge of the current state of the
system. These conditional probabilities are estimated using
a variety of techniques, including bagged neural networks
and kernel methods such as Gaussian Process Regression
(GPR) and compare the results against standard methods
such as linear autoregressive models and the nearest
neighbor algorithm. We demonstrate the algorithms on a
real-world data set and a simulated data set. The real-world
data set consists of the intensity of anNH3 laser. The laser
data set has been shown by other authors to exhibit low-
dimensional chaos with significant drops in intensity. The
simulated data set is generated from the Lorenz attractor
and has completely known statistical characteristics. On
these data sets, we show the evolution of the estimated
conditional probability distribution, the way it can act as a
prognostic signal, and its use as an early warning system.
We also review a novel approach to perform Gaussian
Process Regression with large numbers of data points.

I. I NTRODUCTION

This paper addresses the problem of making predic-
tions of future events on systems that can be described by
low-dimensional dynamical equations. We assume that
we are given data from a data generating process that can
be functionally described by the following equations:

ht = Γ(h∗

t−1) (1)

xt = Ψ(x∗

t−1,h
∗

t , ut) (2)

yt = Ω(xt) (3)

We assume that the functionΓ determining the evo-
lution of the hidden system stateht is unknown. We
also assume that the functionΨ, which generates the
observed output of the system is also unknown. We
assume that the vectorx is an N dimensional state
vector, andx∗

t−1 is its history for the lastd time steps:
x∗

t−1 = [xt−d,xt−d+1, ...,xt−1]. The quantityut is the
observed system input, andyt is the observed scalar
system output. We assume that the entire data that is

available, covering both inputs and outputs is given by
the set(X ,Y).

The hidden stateht is assumed to correspond to
different mode configurations within the system. In the
case where we assume that the hidden state takes on
discrete values,ht switches betweenM modes, each
affecting the output dynamicsΨ. In the case of a failure
of the system,ht could move to a failed state, thus also
changing the nature of the observed output. In other
applications,ht could be a continuous state variable,
modeling a slow progression of the system from a normal
state to a failed state [30]. Because we assume that we
do not know the output functionΨ or the hidden state
ht, we cannot rely on it to help us determine whether or
not the observedyt is anomalous. The problem that we
address in this paper is to develop a method to discover
whether or not the current observed valueyt represents
an anomaly based on the observed history of the system.

Several approaches have been developed in the litera-
ture to address the problem of making future predictions
on systems that can be described by Equations 2,3 and
1. Traditional approaches include those developed in the
system identification community [16]. Other techniques
include Hidden Markov Models, where the transitions
between theM hidden discrete states are modeled as
a first-order hidden Markov process [25]. The HMM
allows for the dynamics of the system to be modeled but
requires that a procedure (such as clustering or learning
vector quantization) be used to develop a discrete rep-
resentation of the system output. Other popular methods
to convert the time series into symbolic representations
include Piecewise Aggregate Approximation (PAA) [10].
Once the symbolic representation is generated it can be
analyzed using the HMM. For many applications, the
dwell time within a hidden state does not follow the
exponential decay that arises from the standard HMM
algorithm. Dong and He [6] [7] have recently developed
this method for analyzing systems with hidden discrete
transitions (as shown in Figure 1) using a hidden semi-
Markov model (HSMM) where the dwell time within a
state is modeled by a Gaussian distribution. Their work
shows that the HSMM can lead to superior performance



on real-world applications compared with the standard
HMM formulation.

Fig. 1. This figure shows a finite state machine indicating a potential
path for progression from normal operation (clear circles) to the failed
state (solid circle). The model allows for the system to move from
a failed state back to normal operation, which models intermittent
problems that can arise in complex systems. For generality, we have
included bi-directional arrows and a fully connected graph. In many
cases, systems can only move into a failed state but not back to normal
operation.

II. BACKGROUND

A time series is a collection of observations repre-
sented sequentially as a function of time. One of the
major issues in time series analysis is to create mathe-
matical models that predict the system behavior from a
set of observations. The approach taken in the machine-
learning community has been to create statistical models
that learn a mapping from inputs to outputs. This does
not require extensive knowledge of the physical system.
In many cases, parametric models such as neural net-
works can produce high quality predictions [35]. The
focus of the current study is restricted to the analysis of
the time-series obtained from low dimensional nonlinear
dynamical system that might exhibit chaotic behavior.
The objective is to develop a prognostic model that can
understand the dynamics of the system from the past
observations and can forecast on how the system would
evolve in the near future, within a certain prediction
horizon. In many cases the decomposition of the time
series into separate, simpler processes can be useful [31].

The simplest way to achieve this is to develop a model
that learns from the training set in order to obtain a good
estimate on the model parameters. Hence the first task
is to adapt the knowledge about the model (to be de-
veloped) from the historical dataset. This is followed by
obtaining the information on the next predicted (model)
output conditioned over the current knowledge of the
developed model. Once the single-step prediction is

obtained, the main challenge lies in forming a multiple-
step-ahead prediction scheme, irrespective of the model
type. This is done by updating the model with the current
estimate of the output at each iteration and repeating the
predictor fork number of steps in the future.

The idea to predict future values as a linear combi-
nation of the preceding values was first introduced by
Yule [39] as the auto-regressive process (AR). A compre-
hensive literature review on conventional techniques to
select a model that could be used to forecast the behavior
of the time has been provided by Weigend et al. [35]. In
this literature, the authors provide some good insight on
local-linear model, global AR, MA, and ARMA model
and semi-local approach like Radial Basis Function
(RBF) based model. K-nearest neighbor, a local average
model, is a widely used supervised algorithm where the
predicted instance is determined by the weighted average
of the outputs, those present in the training set, with
similar input vectors. Using different numbers of nearest
neighbors, it is possible to find the optimal value ofk for
which the RMSE is minimized. McNames [22] presented
a new method of optimizing the model parameters in
order to minimize the multi-step cross validation error.
In previous work [22], the author proposed the adoption
of nearest trajectory model for time-series prediction.
This method is motivated to search the closest trajectory
points in the reconstructed state space as opposed to
nearest neighbors. A comparative study on different
nonparametric methods namely the nearest neighbors,
RBF and nearest trajectory methods to predict chaotic
time series can be found in [15]. The idea to obtain
iterative time-series predictions using regression tree
based approach has been addressed by Badel et al [1].

There is an increasing interest to investigate the
appropriateness and adaptableness of global prediction
methods to model nonlinear dynamical systems. Among
all, neural networks is probably the most studied non-
linear function with input-output mapping capability. A
standard way is to use MLP, RBF architecture in order
to forecast time series with neural network. Several
researchers have used hybrid predictors where the hybrid
neural network is a conjunction of global approximation
and local approximation.

Recently, probabilistic Gaussian Process models have
gained a widespread popularity in the prognostic com-
munity. Given any initial value of the input, any of these
models are intended to predict the distribution of future
observation, based on its past knowledge. Naturally it is
desirable to have a quantitative analysis as a measure of
the uncertainty associated with each model prediction on
future observations.
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A detailed review on various sources of uncertainties
has been well documented by Draper [9]. In the presence
of model and input uncertainties, Gaussian Processes, a
Bayesian based approach, is considered to be the most
suitable technique where the predicted output can be
shown to be a weighted sum of the training data and can
be associated with an “error bar” which defines a confi-
dence interval on the given prediction. Earlier in 1996,
Neal [23] inferred that Gaussian Process (GP) models
are equivalent to the neural networks with one hidden
layer with infinitely large number of hidden neurons.
Inspired by Neal’s work, Rasmussen [26] first introduced
the empirical formulation of Gaussian Processes in terms
of probabilistic model using Bayesian treatment. He
showed that simple matrix operations can be useful to
develop a noise model and define the prior distributions
over input variables.

Mackay [20] and Seeger [29] extended this research to
show the associations of GP model to several other pop-
ular machine learning techniques like generalized Radial
Basis Functions (RBF), Spline smoothing technique and
Support Vector Machines. GP can be defined as a random
function such that the output of the function, for a
finite number of input points, constructs a random vector
which is normally distributed. GP is fully specified by its
mean function and covariance function. For zeros-mean
process, the latter plays the prime role to characterize the
process. It is interesting to note that a covariance function
looks more like a kernel function that maps similar input
data points to nearby neighborhood and the similarity
is measured by the output of the function evaluated
between any two input points. In statistical terms, the
kernel function calculates the covariance between the
outputs corresponding to different inputs and the choice
of the covariance function typically depends on the prior
assumption on the smoothness and continuity of the un-
derlying function generated by a process. In other words
the covariance function can be an automatic choice to
characterize any process. Mathematically, a covariance
function is termed valid if it produces a nonnegative
definite covariance matrix for a given set of input points.
Mackay [20] provided a detailed description on a wide
variety of covariance functions.

III. M AIN IDEA

The key idea discussed in this paper is to build a
predictive model that estimatesyt given the history of
past observations. Rather than creating a single ’point-
estimate’ ofyt, we estimateP (yt|y

∗

t−1). In this formu-
lation the mean of this quantity (obtained by computing
the expected value) will produce an estimate for the

future value ofxt while the variance of this distribution
would quantify the uncertainty in the predictions. As
that uncertainty changes in time, it can be indicative of
an unanticipated change in the data generating process.
This change could be due to several issues, including
the movement of the hidden stateht from one state to
another.

For a true prognostic capability on low-dimensional
systems, i.e., one where a forecast is made at a time
horizon significantly far in the future compared to the
natural frequency of the system, we need the ability
to make long term predictions. Such predictions are
theoretically impossible for chaotic systems [24] if the
prediction horizon is on the same order as the Lyapunov
time. This quantity is the amount of time that is required
for a volume of phase space to expand to a size that
completely covers the underlying dynamic attractor.

There are at least two ways to make predictions about
an event in the future. One method is to make the
prediction in such a way that the estimateP (yt+τ |y

∗

t−1)
for a fixed durationτ in the future. Ifτ is significantly
longer than the natural period of the system as measured
by the low frequency modes in the Fourier spectrum of
the signal, such a model would make predictions that
are fixed in time; it would only make predictions for
those events that are exactlyτ units in the future. The
second method is to generateiterated predictionswhich
rely on developing a model to estimateP (yt|y

∗

t−1) and
then feeding the output of the model back into the input,
thus producing an estimate ofP (yt+1|µt, y

∗

t−1), where
µt is a statistic (such as the mean) computed from the
distribution computed at timet [28], [33]. This form of
iterated prediction is depicted in Figure 2.

Fig. 2. The top panel in this figure shows a method for generating
predictions of the quantityP (yt|y∗

t−1
) using Gaussian Process re-

gression. The lower panel shows a method to do iterated predictions,
where a statistic such as the mean output of the model is fed backinto
the model to generate the next output.]
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IV. A LGORITHMS

We provide a brief overview of three algorithms
that we use for estimatingP (yt|y

∗

t−1). The first two
algorithms, the k-nearest neighbor and the bagged neu-
ral network algorithms, have been developed for many
applications and have been widely used in the litera-
ture [13]. These algorithms provide a benchmark for
comparison against the performance of the Gaussian
Process regression which has become popular in the
machine learning community over the last ten years.

A. K-Nearest Neighbor

The k-nearest neighbor uses all available input data
X and associated output dataY until time t to produce
a prediction ofyt+1. Specifically, in order to estimate
P (yt|y

∗

t−1), given x∗

t we identify the k vectors in
the data set that are closest to that vector in terms
of the Euclidean distance. The mean of the outputs
associated with thosek vectors is used as an estimate of
the expected value of the distribution,EP (P (yt|y

∗

t−1))
and the variance of the outputs is used to estimate
V arP (P (yt|y

∗

t−1)). This method does not attempt to
summarize the data in any way and simply uses a
simple ‘look-up’ table to estimate the parameters of
the distribution. These estimates are based on heuristic
principles regarding the local distribution of data at time
t.

B. Bagged Neural Networks

The bagged neural network [3] model consists of
developingN feedforward multi-layer perceptrons using
the available input and output data. Each model is made
by taking a sample of data (with replacement) from the
data set(X ,Y). If each network is labeled asGi(θi),
the overall estimate ofEP (P (yt|y

∗

t−1)) is given by:

EP (P (yt|y
∗

t−1)) =

N
∑

i=1

Gi(Xi, θi) (4)

The estimate of the variance in the prediction, and
thus the associated uncertainty is given by:

V arP (P (yt|y
∗

t−1)) =

N
∑

i=1

[Gi(Xi, θi)−EP (P (yt|y
∗

t−1))]
2

(5)
It is important to note that this estimate of the uncertainty
is a function of the heterogeneity of the data samples
Xi. In the event that all samples are identical, the only
variation in the estimates will be due to variation in
the initial starting point of the optimization procedure.

This method is related to Ensemble Methods in machine
learning and are widely used to estimate the mean and
variance of the target distribution [34].

C. Gaussian Process Regression

A Gaussian Process is a stochastic process such that
each finite subset of variables in the process is multivari-
ate Gaussian distributed [27]. In 1996, Neal [23] noted
that the if the weights and biases in a neural network
are drawn from a Gaussian distributed, as the number
of hidden units increases, the prior distribution over
functions defined by such networks will converge to a
Gaussian Process. This important result lead the machine
learning community to research Gaussian Processes and
Support Vector Machines.

Following the notation and derivation in Rassmussen
and Williams [27], Gaussian Process Regression is a
generalization of the standard linear regression model.
We begin with a brief review of their Bayesian derivation
of linear regression with the modelf(x) = xT w with
additive Gaussian noise, we have:

f(x) = xT w (6)

y = f(x) + ǫn

ǫn ∼ N(0, σ2
n)

where x is the test vector andw is a set of weights.
Assuming that we choose a prior distribution for the
weights as Gaussian with zero mean and covariance
matrix Σp, and that the noise is Gaussian and inde-
pendent and identically distributed, with varianceσ2

n,
we compute the posterior probability distribution of the
weights given the data(X ,y):

P (w|X,y) = N(
1

σ2
n

A−1Xy, A−1) (7)

where A = 1

σ2
n

XXT + Σ−1
p . In order to make a pre-

diction, given a test input̃x, we compute the predictive
distribution by averaging over the weightsw and obtain:

P (f(x̃)|x̃,X,y) = N(
1

σ2
n

x̃T A−1Xy, x̃T A−1x̃) (8)

whereA = 1

σ2
n

XXT + Σ−1
p . Using the so-called ’ker-

nel trick’, we obtain Gaussian Process Regression by
assuming that we have a mappingΦ(x) that maps the
originalN dimensional data into a large, possibly infinite
dimensional space. Replacing the independent variable
x with its transformed version leads to the following
posterior distribution:
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P (f(Φ(x̃))|̃(Φx),X,y) =

N(
1

σ2
n

˜Φ(x)
T
A−1Xy,Φ(x̃)T A−1Φ(x̃) (9)

This implies that the posterior distribution (eqn. 9) is also
Gaussian, with the predicted mean̂µ(x̃) and variance
σ̂(x̃) for a given test input(x̃). It is not very difficult to
show that substituting the value ofA and doing some
simple matrix manipulations the predicted mean and
variance,in the feature space, can be expressed as

µ̂(x̃) = Φ(x̃)T ΣpΦ(x)
T
[σ2

nI + Φ(x)ΣpΦ(x)
T
]
−1

y

(10)

σ̂(x̃) = Φ(x̃)T ΣpΦ(x̃) − Φ(x̃)T ΣpΦ(x)[σ2
nI

+ Φ(x)ΣpΦ(x)
T
]−1Φ(x)ΣpΦ(x̃) (11)

It is important to note that the full Gaussian Process
involves a two stage time complexity. The first one is
definitely the time required to learn the hyperparameters,
those used while constructing the covariance function.
The immediate objective is to estimate the vector of
the hyperparameters and the noise term by maximizing
the log-likelihood. Throughout this research a stationary
covariance function has been used and looks like:

C(x, x′) = θ1 exp

(

−
1

2

m
∑

i=1

(xi − x′

i)
2

σ2
l

)

+ θ2 + θ3δij (12)

where θ=[θ1,θ2,θ3,σl] is the vector of hyperparame-
ters of the covariance function. The parametersθ1 and
σl control the overall scale in vertical and horizontal
variations respectively. Hereθ2 is the bias term and
θ3δij is the noise term whereθ3 is the variance of the
noise andδij is the Kronecker delta function. In order
to train the Gaussian Process, these hyperparameters are
optimized based on the seen examples. This means that
the hyperparameters can be optimized withCm

n combi-
nations of seen examples, whenm points are selected
from a pool ofn input points(m < n). As m increases
the computational complexity increases exponentially.
A common way to compute the hyperparameter vector
is to maximize the log-likelihood by taking the partial
derivatives with respect to the hyperparameters. Further
details of the cost function and optimization algorithm
can be obtained in the following reference [20].

The second factor is the inversion of(σ2
nI +

Φ(x)ΣpΦ(x)
T
) which is an × n matrix and compiling

the matrix inversion subroutine can get extremely time
and memory intensive with very largeN . To handle this
issue, we have adopted the Gaussian process method
using V-formulation developed by Foster et. al [12].
In the proposed technique, the low rank approxima-
tion of larger matrices is being calculated using partial
Cholesky factorization. In equation 10, then×n matrix
(Φ(x)ΣpΦ(x)

T
) can be approximated byV V T , where

the n × m matrix V is constructed by partial Cholesky
decomposition (PCD). These algebraic operations can be
summarized as follows,

[Φ(x)ΣpΦ(x)
T
]n×n

PCD
→ Vn×m.Vm×n (13)

[Φ(x̃)T ΣpΦ(x)
T
]p×n

PCD
→ V ∗

p×m.Vm×n (14)

Equation 10 can be rewritten as,

µ̂(x̃) = V ∗V T [σ2
nI + V V T ]

−1
y (15)

Lemma 1:V T [σ2
nI +V V T ]−1 = [σ2

nI +V T V ]−1V T

The V formulation takes advantage of the above
lemma to reconstruct both equation 10 and 11. The
details on the proof can be obtain in the following
literature [12]. Using Lemma 1, one can rewrite equation
15 as,

µ̂(x̃) = V ∗[σ2
nI + V T V ]

−1
V T y (16)

Equation 16 is the basis of V formulation. Instead
of directly inverting then × n matrix [σ2

nI + V V T ],
the algorithm address the inversion ofn × m matrix
[σ2

nI+V T V ], uses the partial Cholesky factorization. For
smallerm, the regression algorithm with V formulation
is much faster and also numerically stable.

V. L ORENZ DYNAMICS AND LASER DATA

In this section we provide a small description on the
Far-infrared (FIR) laser system,the prime source of our
experimental dataset, used in this research to test the
machine learning algorithms. It is very complicated to
develop an accurate physical model of the FIR laser
system. However several researchers have shown the
connection of the experimentally measured electric field
from NH3 laser system to that of the dynamics of
Lorenz’s model [36]. The Lorenz’s equation, as proposed
by Hankel [14], can approximate the dynamical behavior
of the optically pumpedNH3 single mode laser field.
The equations for the Lorenz model can be expressed as
follows,
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Input: X (Input), t (target),C (Covariance Function)
Rmax (maximum rank),̃x (test input) andNiter

(Number of iterations).
Step 1: Randomly select a subsetm of n input points
to train hyperparameters (wherem <n).
Step 2: Optimize hyperparameter vectorθ.

a) Initialize θ=[θ1,θ2,θ3,σl]
b) Compute covariance matrixC usingn

input points.
c) Compute low-rank approximation of

covariance matrix constructed in (b).
d) Construct log-arithmetic likelihood function.
e) Maximize cost function with respect to each

hyperparameter.
f) Obtain the optimized hyperparameter values.

Step 3: Construct Model.
g) Redefine low-rank approximation of covar-

iance matrix using optimized hyperparameters.
Step 4: Make Predictions

for k := 1 to Niter

x̃ = x̃;
h) Compute covariance matrix between test

points and active set.
i) Redefine low-rank approximation of

covariance matrix constructed in (g).
j) Compute and Storekth predictive mean

and variance.
k) Updatex̃ with kth predicted mean.
end

Output: µ̂(x̃) (Predicted mean),̂σ(x̃) (variance)

Fig. 3. Steps of Iterative Gaussian Process Algorithm.

u̇ = −σ(u − v) (17)

v̇ = −u(w − r) − v (18)

ẇ = uv − bw (19)

The set of differential equations 19 describes a non-
linear dynamical system and for certain values ofσ,
b and r, the evaluation of the state vectors(u, v, w)
give rise to the famous Lorenz-like spiral chaos, known
as Lorenz attractor. Figure(4) shows a typical three di-
mensional representation of the Lorenz attractor, numer-
ically simulated using4th order adaptive Runge-kutta
integration scheme. The state variables and the control
parameters in the Lorenz equation are closely related
with the physical quantities of the laser physics. The
details of these relationships and their interpretations can
be found in the following literatures [14]. The absolute
square of the state variable (u) at each time instant is

−10 −5 0 5 10 −10

0

10
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15

20

25
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Fig. 4. This figure shows a three dimensional representation of the
Lorenz attractor evolved with time. The integration time stepis 0.05
second withσ = 2, b = 0.25 andr = 15. Hereu, v, w are the state
variables.

analogous to the electric field intensity field of theNH3

laser system. The experimental dataset on the intensity
pulsation (figure 5), sampled at 12.5 MHz, has 25000
8-bit sample points obtained from an optically pumped
81.5-micronNH3 FIR laser. The data has a signal-to-
noise ratio of 300. Further details of the measurement
setup can be found in the literature by Huebner et al
[14]. and the dataset has been obtained from the Santa
Fe Time series competition. The Lorenz-like chaotic
patterns observed in the intensity pulsation of the laser
can be theoretically generated using Lorenz model with
the control parameters adjusted toσ = 2, b = 0.25 and
r = 15.

VI. A PPLICATIONS TOMECHANICAL SYSTEMS

Built-in diagnostics and prognostics schemes, to inter-
rogate the condition of components or sub-components
of a system, has tremendous potential as this could
offer cost effective solution to improve performance
and reliability of these aging or newly designed com-
plex systems. Recent developments in systems health
monitoring indicate that fault detection systems make
use of either passive type or active sensing devices
[5], [32], [37], [38], those connected in a discrete or
continuous fashion. In most cases, these sensing devices
monitors one or more state variables depending on the
nature of the application and the outputs are typically a
series of signatures, a measure of different system states.
In structural applications, failure generally initiates in
regions with high stress concentration which leads to
complex crack patterns within that material.Under the
influence of sufficiently large external energy, the nucle-
ated crack might propagate until complete failure occurs.
These progressive damage could cause a change in the
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dynamic characteristics and also reduce the strength of
the structure, depending on the geometry and location of
the fault. The dynamic response of the system is even
more complex due to complicated stress wave patterns,
material nonlinearity and the inherent nonlinearity asso-
ciated with continuously evolving geometry.

Recent studies have revealed that techniques based on
the nonlinear manifestation of defects through generation
of multiple harmonics are very promising for nonde-
structive inspection. The history of nonlinear techniques
for the NDE has been mentioned by Donskoy and
Bovsunovskii. Donskoy et al. [8] addressed the vibro-
modulation technique that has been implemented in the
N-Scan damage detection system. This technique uti-
lized the effect of the nonlinear interaction of ultrasonic
waves and vibrations at the interface of the defect.
Bovsunovskii et al. [2], [21]investigated the resonance,
sub-, and super-resonance vibrations of an elastic body
with a crack, and presented analytical, numerical, and
experimental results of a cracked body with one de-
gree of freedom. A simple analytical model has been
presented by Yamanaka et al. [17]–[19] to explain the
interaction between crack planes using van der Waals
interatomic force. This approach addressed the funda-
mental problem regarding the detection of a closed crack
in ultrasonic testing. The paper proposes a new detection
technique based on the subharmonic components which
is generated due to the nonlinear interaction of crack
surface and forcing function. However, he showed that
under certain parametric condition, the vibration signals,
that represent the crack opening displacement, can ex-
hibit chaotic behavior. Foong et al. [11] have shown
that the response of nonlinear dynamical systems can
have chaotic oscillation under fatigue crack growth.In
vibration based or wave based approach, the outputs
of sensors are basically time series and analysis of
these signals are far more complicated than anticipated,
for real life heterogeneous systems. This circumstances
gives rise to an increasing interest to explore different
time-series analysis on nonlinear chaotic systems.

VII. R ESULT SECTION

Results are presented to demonstrate the applicability
of the iterative Gaussian process method to predict the
futuristic behavior of the experimental data, obtained
from NH3 laser system. In the first set of analysis, part
of the data (1200 sample points) has been assigned for
training purpose as shown in figure 5. Three different
data segments, each of 500 sample points in length,
have been arbitrarily chosen from the rest of the time
series and have been assigned for test purpose. Once the
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Fig. 5. This figure represents the time history of the intensity
experimentally generated fromNH3 laser system. The first 1200
sample points of the data (dark) has been used for training andthe
rest 500 points (light) for test purpose.

model is appropriately trained, it is possible to iteratively
predictq steps ahead in time for each test case, given the
very first sample point of the corresponding test case.
It should be noted that, for a chaotic time series, the
forecast ofq steps in future is restricted to certain pre-
diction horizon that can be calculated from Lyapunov’s
exponent, if known. However to predict within this limit,
it is necessary to train the model such that it learns on
the underlying dynamics of the system from the scalar
observations and the extraction of the dynamics can
be achieved by utilizing the time embedding technique.
According to Taken’s theorem [4], given a finite set
of scalar observations, it is possible to reconstruct the
attractor in the phase space with an appropriate choice
of time delay (τ ) and embedding dimension (D). Given
a time seriesx(t) of length N , the delay vectorsy(t)
with reassigned length ofN − (D− 1)τ data points can
be represented as follows,

y(t) = [x(t)x(t+τ)2x(t+2τ)...x(t+(D−1)τ)]T (20)

[need some feedback on how much to explain
on this topic. Some part of the results have been
illustrated in the conclusion section]

VIII. C ONCLUSIONS

The present study describes a methodology using
Gaussian process to study low dimensional dynamical
chaotic systems. Prognostic algorithms are aimed not
only to forecast statements on the upcoming future
events but also to generate warning signals,ahead in
time, regarding any possible catastrophic failures if
anticipated with confidence. In this work, it has been
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Fig. 6. The normalized mean square error (NMSE) of prediction has
been plotted for different values of rank (set to maximum rank)that
has been used to reconstruct the low rank approximation of thematrix
using partial Cholesky factorization. The maximum rank is setto 340
which is 10× dimension of the training set.
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Fig. 7. The above figure represents the scatter plot of the true
observation and the modeled data. The straight line represents the
ideal case when the true observation has been plotted acrossitself. The
hollow and solid circles represent the pre-collapse and post collapse
points (respectively), modeled using GP with V-formulation.Similarly
hollow and solid squares correspond to pre-collapse and post collapse
points (respectively), modeled using GP without V-formulation. Note
that this is the same test case illustrated in figure 5.

TABLE I
THE TABLE REPRESENTS A QUALITATIVE COMPARISON OF

NORMALIZED MEAN SQUARE ERROR(NMSE) USING DIFFERENT

MODELS. THE RESULTS ARE BASED ON450 SAMPLE POINTS OF

TRUE AND MODELED OBSERVATIONS. THE FIRST1200SAMPLE

POINTS SERVES AS TRAINING SET AND PREDICTIONS HAVE BEEN

DONE ON THREE SEPARATE TEST CASES(A, B, C). NOTE FOR

K-NN METHOD, THE VALUE OF K IS SET TO30.

Test GP GP-V B NET K-NN
A (1201-1650) 0.1594 0.1095 0.2390 0.2574
B (2001-2450) 0.1820 0.0873 0.2862 0.2495
C (3201-3650) 0.1005 0.1246 0.1913 0.1985
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Fig. 8. The top image in this plot shows the true observation
(test vector) that has been predicted. The lower half of the figure
demonstrates the prognostic signal, a digitalized indicator,that can be
generated prior to the true collapse. Both GP with and without V-
formulation is able to flag the forthcoming collapse event. Note that
this is the same test case illustrated in figure 5.
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Fig. 9. This figure represents the comparison based on cumulative
prediction errors resulting from different models. Clearlyit shows that
both Gaussian process with and without V-formulation accumulates
less prediction error within a certain horizon, compared to neural
network and K nearest neighborhood withk = 30. Note that this
is the same test case illustrated in figure 5.

TABLE II
THE TABLE BELOW REPRESENTS THE PREDICTION HORIZON,

RELATIVE TO THE START POINT, FOR DIFFERENT MODELS(FOR

CLARITY, WE INDICATE THAT THE PREDICTED HORIZON

CORRESPONDS TO THE SAMPLE POINT FOR WHICH CUMULATIVE

SQUARE ERROR IS≤ 1). NOTE FORK-NN METHOD, THE VALUE OF

K IS SET TO30.

Test GP GP-V B NET K-NN
A (1201-1650) 274 346 122 119
B (2001-2450) 184 209 144 115
C (3201-3650) 312 313 235 160
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Fig. 10. This figure addresses the computational issues associated with
Gaussian process with and without V-formulation. It can be seen that
the GP with V-formulation has a superior capability in handling both
time and space complexities, particularly with larger training points as
shown in log scale.

TABLE III
THE VALUES IN THE TABLE BELOW INDICATES THE NUMBER OF

SAMPLE POINTS BY WHICH THE PROGNOSIS SIGNAL LEADS THE

TRUE COLLAPSE POINT. THE PROGNOSIS SIGNAL IS SET TO1 ONCE

THE UNCERTAINTY ASSOCIATED WITH EACH PREDICTION CROSSES

A PREDEFINED THRESHOLD.

Trail GP GPV
A (1201-1650) 24 24
B (2001-2450) 30 8
C (3201-3650) 34 42

demonstrated how Gaussian Process can be trained with
time embedded historical dataset to make short term
predictions on future evolutions of the laser system.
In Fig. 8, the intensity plot shows that the developed
procedure can accurately predict the rapid oscillations
that grows monotonically with time. It has been observed
that the generated forecast holds good correlation with
the original data until the collapse point is reached. In
the post-collapse region the model starts accumulating
error and looses it’s prediction capability. Hence it
can be concluded that Gaussian Process as a predictor
can provide adequate feedback on the event of a col-
lapse.Also a comparative study has been conducted on
the performance of the Gaussian Process as a predictor
and the results indicate that Gaussian Process emerges
with a better score when compared with bagged Neural
Network and K-nearest Neighbor based algorithms.

As mentioned earlier that in Gaussian Process, the
predicted output is associated with an “error bar” that
describes the confidence limit on that prediction. In this
research, one of the key intensions is to generate a
prognosis signal that can be used to forecast and map
the future collapse event. This article has demonstrated

a state-of-art that can generate a warning signal in the
pre-collapse stage such that precautionary measures can
be taken before the collapse occurs. The idea is based
on the fact that, given a trained process, the uncertainties
associated with the prediction of a future (system) col-
lapse would intuitively be greater than predicting alike
collapse example from the subset of the historical data.
Once the uncertainty associated with the forecast crosses
certain threshold, the output is set to “high”’ status,
indicating a probable collapse might occur. Fig. 8 shows
such a digitalized output and for different test cases,it has
been observed that the warning signal is set to “high”’
much before the actual collapse occurs, as shown in
Table III. Hence there is an immense potential of using
such warning signals for prognosis purpose on real life
systems, specially where the historical data has some of
the examples with the associated collapse patterns.
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